

smarter chemistry | smarter decisions

Combining water analysis with protein electrostatics

Tim Cheeseright

The Hard Work

Susana Tomasio

Mark Mackey

Paolo Tosco

Protein Interaction Potentials

Protein Electrostatics

- > Cresset's electrostatic model is more detailed than other MM based approaches
- > Understanding the subtleties of the protein active sites should help inform ligand design
- > Similar to GRID and others but with Cresset's electrostatics
 - > Flood active site with ligand atoms
 - > Measure interaction potential at each point
 - > Contour potentials as a surface

Example – DPP-IV from 1X70

Ligand → Protein Notes

- > To calculate the protein interaction potential requires a well prepared protein
- > Requires a different approach to electrostatics as protein has large number of charged groups
 - → Uses a Distance Dependent Dielectric
- > Calculations take 1-2 minutes
 - > Frustratingly slow in practice
- > Protein interaction potentials show what type of ligand atom is desired, not what type of ligand field
- > Colored for ligand interpretation
 - > Red → Positive ligand required
 - > Blue → Negative ligand required

Example – PERK from 4G31

Example – PERK from 4G31

Example – CCR5 from 4MBS

Example – CCR5 from 4MBS

Protein Interaction Potentials Conclusions

- > Looking at protein interaction potentials gives valuable insights into the electrostatics of the protein
- > Useful in molecule design
- > Still some research to identify useful contour levels
- > Requires well prepared protein
- > Scheduled for release in 2016 as part of a new application

3D-RISM

Better water positions through improved electrostatics?

3D-RISM

- > Analytical method for working out where water goes (Ornstein-Zernike equation)
- > Conceptually equivalent to running an infinitetime MD simulation on the solvent and extracting the solvent particle densities

$$\begin{split} &h(r_{12}, \omega_1, \omega_2) \\ &= c(r_{12}, \omega_1, \omega_2) \\ &+ \rho \int dr_3 d\omega_3 c(r_{13}, \omega_1, \omega_3) h(r_{32}, \omega_3, \omega_2) \end{split}$$

3D-RISM

- > Analytical method for working out where water goes (Ornstein-Zernike equation)
- > Conceptually equivalent to running an infinitetime MD simulation on the solvent and extracting the solvent particle densities
- > Horribly complicated maths
- > GPL implementation in Amber Tools
- > Output is grid containing particle densities
- > Thermodynamic analysis to assign 'happiness' to each water

Problems

- > Results depend on the potential function from solvent to solute $u(r_{12}, \Omega_1, \Omega_2)$
- > In practise, this means vdW + electrostatics
- > Results only as good as your potential functions
- > Does the XED description of electrostatics improve the results?

Comparing XED with GAFF – Hydrogen Density

formaldehyde_x:1

XED

MOL 1.000

GAFF

Comparing XED with GAFF – Hydrogen Density

NMeAc_x:1 1.000

XED

Extend to proteins – 1FJS

Assign water positions and delta-G

> From a 3D-RISM calculation we obtain thermodynamic data: solute internal energy, solute solvation free energy, average solutesolvent interaction energy, density, direct correlation and total correlation.

> This enables us to compute the position of the water molecules corresponding to the regions of high water density and the corresponding ∆G.

Examples & Comparisons

- > Use Amber (GAFF) and XED force fields to calculate
 - > Water positions & orientations
 - > Water energies relative to solvent
- > Compare for 3 proteins taken from the Iridium set
 - > 1TT1 Glutamate receptor with kainite ligand
 - > 1N2V tRNA-guanine transglycosylase, synthetic ligand
 - > 1LPZ FXa in complex with synthetic ligand

1TT1 – X-ray

1TT1 – Amber vs XED

1.45Kcal → Unstable (just) 13.17Kcal → Unstable (very)

Both contain H-bonds but Amber has poor geometry to CO₂-

1TT1 - XED

Environment at least partially hydrophobic

1TT1 – Amber vs XED

-2.59Kcal → Stable (just) -13.33Kcal → Stable (very) Extensive H-bonds suggest stability

1TT1 – XED shows good agreement with X-ray

Thick sticks – XRAY, Thin Sticks - XED

1N2V – X-ray

1N2V – Amber vs XED

-6.21cal \rightarrow Stable 2.57Kcal \rightarrow Unstable (just) Both contain H-bonds but Amber has poor geometry to CO_2^-

1N2V – XED vs X-ray shows good agreement

1LPZ – Amber vs XED

Broad agreement in this case

1LPZ – Amber & XED give similar results

RISM with XED Conclusions

> Water patterns around small molecules look better with XED

- In proteins, XED provides better water patterns for most cases
 - > A few limitations: it over-polarises amides
 - > Validation is currently being performed
 - > Difficult to find crystal data
- > Release scheduled for 2016 as part of a new product

Bringing it all together

- > Does using the stable waters change the protein interaction potential?
 - > Using 1LPZ
 - > Remove all waters with relative energy > -3 Kcal/mol
 - > Merge remaining waters into protein
 - > Add positive and negative interaction potentials

1LPZ Protein Int. Pot. – No Water

1LPZ Protein Int. Pot. – With Stable Water

Conclusions

- > Protein electrostatics provide useful insights for molecule design
 - > Well prepared protein essential
- > 3D RISM using the XED force field promising method for assessing water in active sites
 - > Validation in progress
- > Combining water analysis enhances the view of protein electrostatics

Thank you

tim@cresset-group.com

