Flexible academic licensing

Are you a:

  • PhD student or postdoctoral researcher
  • Course tutor
  • Principal investigator
  • Department head?

Did you know that:

  • You can access Cresset ligand-based desktop applications through a variety of flexible licensing options
  • If you publish work which used Cresset technology, and you cite the applications used, we will promote your work through our website and newsletter?

Apply Cresset to your research

Academic customers tell us that our applications help them communicate ideas, give new insight, and are easy to learn and use. Below are just a few examples of how you can apply Cresset technology to your research.

Active design using electrostatics

Torch’s ligand-centric view enables 3D design whether or not you have a protein crystal structure. It makes it easy for you to focus on the designs that work and have good physicochemical properties.

Electrostatic and shape descriptors provide a rich informed view to help you understand the effects of chemical changes and eliminate designs that are unlikely to be active.


Figure 1: A change on one side of the molecule can often influence a distal region, especially if the systems are electronically linked through π-systems. This simple change has multiple effects due to the increased electron-withdrawing character of the new heteroatom and the addition of an aromatic ring: (A) the boundary of negative electrostatic potential extends further; (B) the shape and size of the negative π-cloud is significantly altered; (C) the size and extents of the positively charged aromatic edge are increased; and (D) there is a small increase in the positive potential associated with the aromatic hydrogens of the pyrimidine nucleus at the other end of the molecule.

Find and understand activity and selectivity cliffs in your SAR

Activity Miner, a component of Torch and Forge, helps you find and understand critical regions in complex SAR. Using the concepts of activity cliffs and matched molecular pairs, you can link activity changes to electrostatic and shape changes. Since selectivity is often as important as activity, Activity Miner makes it easy for you to compare multiple end points. The design process in Torch enables you to apply this knowledge to progress your project.

Activity Miner top pairs
Figure 2: Pinpoint the most significant changes to your molecules using the sortable top pairs table. Find critical points in the SAR and understand how they relate to changes in physicochemical properties.

Powerful models to interpret your data

Forge uses the Cresset patented ligand alignment algorithm to generate realistic, interpretable relationships between your molecules. It includes an impressive range of SAR models that combine robust analysis with customizable parameters, ease of use and intuitive visualization. For SAR analysis, there is no need to look any further than Forge.


Figure 3: QSAR models in Forge decipher complex SAR and inform the design of new molecules.

New SAR insights form novel methods


Figure 4: Activity Atlas is a novel, qualitative method that generates three distinct maps of the electrostatic, shape and hydrophobic properties around your molecules. It can be used with small or large data sets and is particularly useful for projects where traditional 3D-QSAR approaches fail.

Find biologically equivalent alternatives to escape IP and toxicity traps

Customers tell us that Spark is the best scaffold hopping and bioisostere replacement tool they have ever used. The easy to use interface quickly generates a range of novel molecules from an initial structure. Profiling and scoring help you choose the most innovative and tractable leads with the properties you need.


Figure 5: Spark workflow.

Request an academic license

Testimonials

Molecular visualization makes it easier to communicate ideas

“Working with Cresset tools has helped me generate new ideas for my projects in various disease areas. The molecular visualization has made it easier to communicate my ideas to my experimental collaborators, both chemists and biologists.”

New insight

“Cresset’s software gives new insight to projects I’ve been working on for the past three to four years. I specifically use it to see how proteins, DNA and molecules interact and bind to each other. If we can design drug molecules that will bind to DNA the same way proteins do, we can open up whole new lines of therapy. Cresset is supportive of academic research and they’ve been wonderful to work with to get everything up and running.”

Easy to learn and use

“Our students who use the Cresset systems in their projects tend to gain an affinity with a number of med-chem concepts far earlier than those who do strictly organic projects, for example using Spark to identify new frameworks that possess favorable properties and which can then be synthesized in the lab via a novel reaction. Compounds can be tracked within a TorchLite template and the student can invoke field patterns and orbital coefficients to explain changes to NMR spectra.”

 “My students and I are very grateful for providing us with the educational license and thus an opportunity to explore Cresset’s software in our lectures. Cresset provides marvelous software, easy to learn, easy to use, pleasant looking and its structure is logical and educational. The program manuals are great.”

 “Considering the absence of an experimental structure, the field based concept was a perfect match for our work. It helped us obtain bioactive conformations of ligands based on a validated pharmacophore. The software provided by Cresset is user easy and user friendly, creative and flexible for a new starter to an experienced researcher to use.”

“Visualizing the inhibitor/substrate binding site of protein crystal structure in Cresset using field points calculated by XED force field is very informative. The protocols for all the modules in Cresset are very quick and easy to use. Forge and Spark are excellent programs for LBDD. The radial plots obtained from alignment methods implemented in Forge provide a visual inspection of results and could be effectively used for simultaneously comparing any number of physical properties for the compounds in the dataset. I strongly believe that Cresset software is an important inclusion in the spectrum of software programs used for Computer Aided Drug Discovery paradigm.”