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Abstract
The viral main protease Mpro is a crucial enzyme for the 

replication of the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2). Because of its key role, 

Mpro has received much attention as a potential target 

for novel antivirals.1-6 Using a dataset of 76 Mpro 

inhibitors with known  activity and a common binding 

mode, robust and predictive machine learning (ML) and 

3D-Field Quantitative Structure Activity Relationships 

(QSAR) models were developed, suggesting novel 

design edits required to maximise potency. 

Figure 1:  Crystal structure of the SARS-CoV-2 Mpro 

(PDB 7L131) in complex with a non-covalent inhibitor. 

The Electrostatic Complementarity  surface is 

displayed over the active site; green indicates an 

electrostatic match and red indicates an electrostatic 

clash.

Method

Datasets

76 non-covalent inhibitors with different chemotypes 

and an evenly distributed activity (pIC50: 4.00 – 7.74) 

were partitioned into training set (56 molecules) and 

test set (20 molecules) using 26% activity stratification.

2D-QSAR
2D physico-chemical descriptors were computed using 

RDKit7 natively within FlareTM.8 Cross-correlated 

descriptors were dropped by means of linear Pearson 

correlation matrix, producing a set of six non-redundant 

descriptors: MW, TPSA, #RB, NumHAcceptors, 

NumHDonors and RingCount. These were combined 

with fingerprint descriptors (RDKit, Morgan and 

MACCS keys) to generate 2D-QSAR regression 

models using supervised machine learning methods: 

Support Vector Machine (SVM), Gaussian Process 

Regression (GPR), Random Forest (RF), Multilayer 

Perceptron (MLP) and Consensus.

3D-QSAR
High-quality alignments created by Flare, particularly 

those based on the maximum common substructure 

(MCS) algorithm, generated meaningful molecular 

alignments with a low degree of noise (Figure 2). The 

compounds were aligned by MCS to the co-crystallized 

ligands of the PDB IDs 7L131, 7L141, 7QBB5 and 

8SXR6, which were used as references (weighted 

average contribution) and using the 7L13 protein as an 

excluded volume. Alongside the above machine 

learning methods, 3D-QSAR regression models were 

generated using the Cresset Field 3D-QSAR method.

Figure 2:  The dataset of 76 compounds aligned in 3D 

space by MCS.

Field 3D-QSAR Model 

Visualization and Interpretation 
The Cresset Field 3D-QSAR method offers the 

advantage over ML methods, in that the visual 

inspection of the model coefficients identifies regions 

where the model predicts strong effects on activity.

Figure 4 illustrates the electrostatic and steric model 

coefficients superposed to the most potent molecule 

(37, pIC50 = 7.74). Regions of favorable negative 

electrostatic coefficients are observed in the amide-

carbonyl of the core ring and the nitrogen atom of the 

pyridine unit, which implies that a less positive charge 

on these regions improves activity. Additionally, the 

large green dots point out regions of favorable steric 

coefficients near the 2-chlorobenzyl moiety, which in 

combination to the high steric variance verified this is 

the best moiety to model to increase potency. 

Figure 4: Model coefficients for the Mpro Field QSAR 

model. Electrostatic and steric coefficients (left); 

electrostatic and steric variance (right), using the most 

potent molecule (37) as reference. Compound 

numbering is according to the patent 

WO2022/150584A1.4 

Furthermore, the relevance of the 2-chlorobenzyl 

alcohol group is highlighted by comparing the field 

contributions of compound 37 with similar molecules 

(Figure 5). 

• The absence of this group in compound 8 has an 

unfavorable electrostatic contribution that decreases 

activity by ca. 2.5 log units.

• Large and unfavorable electrostatic and steric 

contributions are observed with the substitution of 

the aromatic ring, causing a decrease in activity of 

ca.1 log unit. 

• The presence of a hydroxyl group such as in 

compound 28 has a strong unfavorable electrostatic 

contribution which decreases its predicted activity. 

28 does present a clear favourable steric 

contribution that rationalizes its superior activity over 

compound 8.

Figure 5: SARS-CoV-2 Mpro 3D-QSAR field 

contributions to predicted activity for compounds 37, 8, 

28, 38 and 46.

Conclusions
• Robust 2D-QSAR and 3D-QSAR regression models 

described and predicted the activity of a library of 

non-covalent SARS-CoV-2 Mpro inhibitors. 

• Superior performance of the Field 3D-QSAR over 

the machine learning models. 

• The analysis of the electrostatic and steric Field 3D-

QSAR coefficients further rationalized inhibitor 

potency.

Statistical Analysis
• The confidence of the generated models is high and 

comparable (Table 1, Figure 2). 

• Morgan FP MLP 2D-QSAR and the MLP 3D-QSAR 

models are the most accurate (r2 = 0.72). 

• All these models are expected to provide the same 

level of accuracy in predicting the activity of new 

compounds. 

• The good agreement between the 2D and 3D 

models suggests that the compounds of this dataset 

act via a similar mechanism. 

• RDKit 2D descriptors and fingerprints are good 

alternatives to Cresset 3D descriptors for building 

predictive ML models. 

• The Cresset Field 3D-QSAR model coefficients 

identify functionality about the molecular frame 

critical for potency.

Table 1: Comparison of the different QSAR models 

measured and predicted statistics

Figure 3: MLP Morgan FP 2D-QSAR (left) and 3D-

QSAR (right) models. Experimental vs. predicted 

activity of the compounds in the training set (purple), 

training set Cross Validation (black) and the test set 

(green).
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QSAR type
Regression 

model
r2 training 

set
q2 training set 

CV
r2 test set

2D-QSAR

(6 physico-

chemical 

descriptors)

MLP 0.91 0.68 0.69

GPR 0.89 0.73 0.67

Consensus 0.89 0.74 0.65

RF 0.86 0.74 0.62

SVM 0.86 0.75 0.61

2D-QSAR

(fingerprints 

(FP))

MLP 

(Morgan FP)
1.00 0.80 0.72

SVM 

(RDKit FP)
1.00 0.83 0.63

SVM 

(MACCS keys)
0.96 0.80 0.50

3D-QSAR

MLP 1.00 0.82 0.72

Field QSAR 0.96 0.81 0.71

Consensus 0.99 0.82 0.70

SVM 0.98 0.82 0.70

GPR 0.99 0.77 0.70

RF 0.99 0.82 0.70
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