Prioritization of new molecule designs using QSAR models: 2D- and 3D-QSAR studies on SARS-CoV-2 M^{pro} inhibitors

Oliver Hills, Matthew Kondal & Natercia Braz

Cresset, Cambridgeshire, UK oliver.hills@cresset-group.com cresset-group.com

Abstract

The viral main protease M^{pro} is a crucial enzyme for the replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Because of its key role, M^{pro} has received much attention as a potential target for novel antivirals.¹⁻⁶ Using a dataset of 76 M^{pro} inhibitors with known activity and a common binding mode, robust and predictive machine learning (ML) and 3D-Field Quantitative Structure Activity Relationships (QSAR) models were developed, suggesting novel design edits required to maximise potency.

Statistical Analysis

- The confidence of the generated models is high and comparable (Table 1, Figure 2).
- Morgan FP MLP 2D-QSAR and the MLP 3D-QSAR models are the most accurate ($r^2 = 0.72$).
- All these models are expected to provide the same level of accuracy in predicting the activity of new compounds.
- The good agreement between the 2D and 3D models suggests that the compounds of this dataset act via a similar mechanism.

Field 3D-QSAR Model

Visualization and Interpretation

The Cresset Field 3D-QSAR method offers the advantage over ML methods, in that the visual inspection of the model coefficients identifies regions where the model predicts strong effects on activity.

Figure 4 illustrates the electrostatic and steric model coefficients superposed to the most potent molecule (**37**, $pIC_{50} = 7.74$). Regions of favorable negative electrostatic coefficients are observed in the amide-carbonyl of the core ring and the nitrogen atom of the pyridine unit, which implies that a less positive charge on these regions improves activity. Additionally, the large green dots point out regions of favorable steric coefficients near the 2-chlorobenzyl moiety, which in combination to the high steric variance verified this is the best moiety to model to increase potency.

Figure 1: Crystal structure of the SARS-CoV-2 M^{pro} (PDB 7L13¹) in complex with a non-covalent inhibitor. The Electrostatic Complementarity[™] surface is displayed over the active site; green indicates an electrostatic match and red indicates an electrostatic clash.

Method

Datasets

76 non-covalent inhibitors with different chemotypes and an evenly distributed activity (pIC₅₀: 4.00 - 7.74) were partitioned into training set (56 molecules) and test set (20 molecules) using 26% activity stratification.

2D-QSAR

- RDKit 2D descriptors and fingerprints are good alternatives to Cresset 3D descriptors for building predictive ML models.
- The Cresset Field 3D-QSAR model coefficients identify functionality about the molecular frame critical for potency.
- **Table 1**: Comparison of the different QSAR modelsmeasured and predicted statistics

QSAR type	Regression model	r ² training set	q ² training set CV	r ² test set
2D-QSAR	MLP	0.91	0.68	0.69
	GPR	0.89	0.73	0.67
(6 physico- chemical descriptors)	Consensus	0.89	0.74	0.65
	RF	0.86	0.74	0.62
	SVM	0.86	0.75	0.61
2D-QSAR (fingerprints (FP))	MLP (Morgan FP)	1.00	0.80	0.72
	SVM (RDKit FP)	1.00	0.83	0.63
	SVM (MACCS keys)	0.96	0.80	0.50
3D-QSAR	MLP	1.00	0.82	0.72
	Field QSAR	0.96	0.81	0.71
	Consensus	0.99	0.82	0.70
	SVM	0.98	0.82	0.70
	GPR	0.99	0.77	0.70
	RF	0.99	0.82	0.70

Figure 4: Model coefficients for the M^{pro} Field QSAR model. Electrostatic and steric coefficients (left); electrostatic and steric variance (right), using the most potent molecule (**37**) as reference. Compound numbering is according to the patent WO2022/150584A1.⁴

Furthermore, the relevance of the 2-chlorobenzyl alcohol group is highlighted by comparing the field contributions of compound **37** with similar molecules (**Figure 5**).

2D physico-chemical descriptors were computed using RDKit⁷ natively within Flare^{™.8} Cross-correlated descriptors were dropped by means of linear Pearson correlation matrix, producing a set of six non-redundant descriptors: MW, TPSA, #RB, NumHAcceptors, NumHDonors and RingCount. These were combined with fingerprint descriptors (RDKit, Morgan and MACCS keys) to generate 2D-QSAR regression models using supervised machine learning methods: Support Vector Machine (SVM), Gaussian Process Regression (GPR), Random Forest (RF), Multilayer Perceptron (MLP) and Consensus.

3D-QSAR

High-quality alignments created by Flare, particularly those based on the maximum common substructure (MCS) algorithm, generated meaningful molecular alignments with a low degree of noise (**Figure 2**). The compounds were aligned by MCS to the co-crystallized ligands of the PDB IDs 7L13¹, 7L14¹, 7QBB⁵ and 8SXR⁶, which were used as references (weighted average contribution) and using the 7L13 protein as an excluded volume. Alongside the above machine learning methods, 3D-QSAR regression models were generated using the Cresset Field 3D-QSAR method.

Figure 3: MLP Morgan FP 2D-QSAR (left) and 3D-QSAR (right) models. Experimental *vs.* predicted

- The absence of this group in compound 8 has an unfavorable electrostatic contribution that decreases activity by *ca*. 2.5 log units.
- Large and unfavorable electrostatic and steric contributions are observed with the substitution of the aromatic ring, causing a decrease in activity of *ca*.1 log unit.
- The presence of a hydroxyl group such as in compound 28 has a strong unfavorable electrostatic contribution which decreases its predicted activity.
 28 does present a clear favourable steric contribution that rationalizes its superior activity over compound 8.

Figure 2: The dataset of 76 compounds aligned in 3D space by MCS.

activity of the compounds in the training set (purple), training set Cross Validation (black) and the test set (green).

References

- 1. Chun-Hui Zhang, et al., ACS Cent. Sci. 2021, 7, 467–475, https://doi.org/10.1021/acscentsci.1c00039
- 2. Chun-Hui Zhang, et al., ACS Med. Chem. Lett. 2021, 12, 1325–1332, https://doi.org/10.1021/acsmedchemlett.1c00326
- 3. Maya G. Deshmukh, et al., *Structure* **2021**, 29, 823–833, <u>https://doi.org/10.1016/j.str.2021.06.002</u>
- 4. William L. Jorgensen, Patent WO 2022/150584 A1
- 5. Andreas Luttens et. al., *J. Am. Chem. Soc.* **2022**, 144, 2905–2920, <u>https://doi.org/10.1021/jacs.1c08402</u>
- 6. Jimena Perez-Vargas et. al., *Emerg. Microbes Infect.* **2023**, 12, 2246594, doi.10.1080/22221751.2023.2246594
- 7. RDKit: Open-source cheminformatics. https://www.rdkit.org
- Flare[™], Cresset[®], Litlington, Cambridgeshire, UK; https://www.cressetgroup.com/software/flare/; Cheeseright T., Mackey M., Rose S., Vinter, A.; Molecular Field Extrema as Descriptors of Biological Activity: Definition and Validation J. Chem. Inf. Model. 2006, 46 (2), 665-676.

Figure 5: SARS-CoV-2 M^{pro} 3D-QSAR field contributions to predicted activity for compounds **37**, **8**, **28**, **38** and **46**.

Conclusions

- Robust 2D-QSAR and 3D-QSAR regression models described and predicted the activity of a library of non-covalent SARS-CoV-2 M^{pro} inhibitors.
- Superior performance of the Field 3D-QSAR over the machine learning models.
- The analysis of the electrostatic and steric Field 3D-QSAR coefficients further rationalized inhibitor potency.