software
Use Flare FEP to make the right ligand design choices and enable lead optimization with confidence
Flare Free Energy Perturbation (FEP) offers a quantitative method to reliably calculate relative binding affinity, enabling accurate ranking of molecules in a congeneric ligand series. The method enables users to test 'in-silico' a large number of molecules, prior to focusing on ‘wet’ lab work, meaning that fewer compounds need to be made and tested to achieve the desired results.
The process supports chemists in making known actives more potent, without having to synthesize 100s or 1000s of compounds, eliminating the time wasted on non-potent molecules. FEP projects can begin with a much smaller number of ligands than may be required for other methods. Benchmarking experiments can be used to gain confidence that your system is prepared correctly, confirming the predictivity of the method on the target and ligand series of interest.
FEP calculation results typically fall within 1kcal/ mol reach of experimental data. This means that Flare users can make better, accurately informed decisions around which ligand modifications can achieve the best results, with new molecule designs often ending up quite far away from the initial starting point.
Free energy cycle
Flare FEP calculations are 2-3.5 times faster in Flare V5 and onwards compared to Flare V4
P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A. Beauchamp, L.-P. Wang, A. C. Simmonett, M. P. Harrigan, C. D. Stern, R. P. Wiewiora, B. R. Brooks, and V. S. Pande, OpenMM 7: Rapid development of high performance algorithms for molecular dynamics, PLOS Comp. Biol. 2017, 3(7): e1005659
S. Liu, Y. Wu, T. Lin, R. Abel, J. P. Redmann, C. M. Summa, V. R. Jaber, N. M. Lim, D. L. Mobley, Lead optimization mapper: automating free energy calculations for lead optimization, J. Comput. Aided Mol. Des. 2013, 27, 9, 755-770
L. O. Hedges, A. S. J. S Mey, , C. A. Laughton, F. L. Gervasio, A. J. Mulholland,C. J. Woods, J. Michel, BioSimSpace: An interoperable Python framework for biomolecular simulation, Journal of Open Source Software 2019, 4(43), 1831
C. Woods , L. O. Hedges, A. S. J. S. Mey , G. Calabrò and J. Michel , www.siremol.org, Sire Molecular Simulation Framework , 2022
G. Calabrò , C. J. Woods , F. Powlesland , A. S. J. S. Mey , A. J. Mulholland and J. Michel , Elucidation of Nonadditive Effects in Protein–Ligand Binding Energies: Thrombin as a Case Study, J. Phys. Chem. B 2016, 120 , 5340 —5350
H. H. Loeffler, J. Michel, C. J. Woods, FESetup: Automating Setup for Alchemical Free Energy Simulations, J. Chem. Inf Model. 2015, 55 (12), 2485-2490
M. L. Samways, H. E. Bruce Macdonald, J. W. Essex, grand: A Python Module for Grand Canonical Water Sampling in OpenMM, J. Chem. Inf. Model. 2020, 60, 10, 4436-4441
O. J. Melling, M. L. Samways, Y. Ge, D. L. Mobley, J. W. Essex, Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo, J. Chem. Theory Comput. 2023, 19, 1050-1062
C. Bannwarth, S. Ehlert, S. Grimme, GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions, J. Chem. Theory Comp. 2019, 15, 3, 1652-1671
C. Devereux, J. S. Smith, K. K. Huddleston, K. Barros, R. Zubatyuk, O. Isayev, and A. E. Roitberg, Extending the applicability of the ANI deep learning molecular potential to sulfur and halogens, J. Chem. Theory Comput. 2020, 16,7, 4192–4202
P. K. Behara, H. Jang, J. Horton, D. Dotson, S. Boothroyd, C. Cavender, V. Gapsys, T. Gokey, D. Hahn, J. Maat, O. Madin, I. Pulido, M. Thompson, J. Wagner, L. Wang, J. Chodera, D. Cole, M. Gilson, M. Shirts, C. Bayly, L.-P. Wang, D. Mobley, Benchmarking QM theory for drug-like molecules to train force fields, Poster presented at CUP XXI, March 08, 2022 - March 10, 2022, Santa Fe, New Mexico, USA
Explore further to see how Flare can add fresh insights into your structure-based design
Explore further