flare™
State-of-the-art Quantum Mechanics (QM) calculations for your ligands
Based on the popular Psi4 and GFN2-xTB implementations, Quantum Mechanics in Flare offers accurate ab-initio DFT-level calculations as well as a computationally efficient semi-empirical tight-binding approach. The QM module features robust pre-defined settings novel users can trust, as well as a choice of different levels of theory for more experienced users.
QM provides an accurate description of a ligand’s electronic structure, enabling molecular electrostatic potentials to be calculated at a high level of theory. Red = positive electrostatics; Blue = negative electrostatics.
https://xtb-docs.readthedocs.io/en/latest/setup.html
D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A. M. James, S. Lehtola, J. P. Misiewicz, M. Scheurer, R. A. Shaw, J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O’Brien, J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R. Brooks, H. F. Schaefer III, A. Yu. Sokolov, K. Patkowski, A. E. DePrince III, U. Bozkaya, R. A. King, F. A. Evangelista, J. M. Turney, T. D. Crawford, C. D. Sherrill, Psi4 1.4: Open-Source Software for High-Throughput Quantum Chemistry J. Chem. Phys., 2020, 152, 184108
C. Bannwarth, S. Ehlert, S. Grimme, GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions, J. Chem. Theory Comp. 2019, 15, 3, 1652-1671