flare™
Study the conformational changes of proteins and assess the stability of protein-ligand complexes
The dynamic stability of protein conformations has become a key technique in the study of proteins and protein-ligand complexes. Flare provides a dedicated interface to create, playback and analyze Molecular Dynamics trajectories, based on OpenMM.
Flare enables highly customized or standard configurations for calculations enabling both bespoke and rapid setup of experiments. Key features in dynamics calculations are:
The analysis of dynamics trajectories in Flare provides the feedback you need to make decisions.
P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A. Beauchamp, L.-P. Wang, A. C. Simmonett, M. P. Harrigan, C. D. Stern, R. P. Wiewiora, B. R. Brooks, and V. S. Pande, OpenMM 7: Rapid development of high performance algorithms for molecular dynamics, PLOS Comp. Biol. 2017, 3(7): e1005659
C. Devereux, J. S. Smith, K. K. Huddleston, K. Barros, R. Zubatyuk, O. Isayev, and A. E. Roitberg, Extending the applicability of the ANI deep learning molecular potential to sulfur and halogens, J. Chem. Theory Comput. 2020, 16,7, 4192–4202
Explore further to see how Flare can add fresh insights into your structure-based design
Explore further